向量的模 向量的模的计算公式( 二 )


常见考试知识点:
1)(一个向量)求向量的模、方向余弦和方向角;
求解过程:
通过两点坐标求得向量的坐标,再求处向量的模,再由公式向量的方向角的余弦值等于向量的对应坐标值比向量的模求得,最后通过反三角函数求得向量的各个方向角 。
2)(两个向量)求两个向量的夹角
求解过程:
先求出两个向量的数量积(坐标运算)、两个向量的模(的乘积);然后通过两个向量的数量积等于两个向量的模的乘积的余弦值(求出cosθ) , 再用反三角函数求出夹角的数值 。
3)向量定义的考察,如两个向量平行、垂直的充分必要条件 。
4)求空间三角形的面积 。(考点,向量的向量积,即×乘)(注:三角形的面积公式:面积等于两边之积乘以夹角的正弦值除以2 。

推荐阅读