2009年, 多名美国亚裔消费者投诉, 尼康相机的“眨眼提醒”功能总是错误地提示他们拍照时眨眼了;2015年, 美国谷歌公司基于面部识别技术开发的一种图片应用, 将一位用户的黑人朋友标记为“猩猩” 。
面部识别技术越来越先进, 并不断渗透我们的日常生活 。 一些人乐观地认为, “刷脸”时代正在向我们走来 。 可是, “刷脸”真的靠谱吗?至少从目前看, 还得打上一个问号 。
准确度欠缺
最近一段时间, “刷脸”接二连三地出糗 。
在美国, 有机构使用亚马逊公司的面部识别系统扫描了535名国会议员的面部照片, 并与相关数据库中的2.5万张罪犯照片比对, 结果28名议员被系统识别为罪犯 。
英国多个城市的警方开始试应用面部识别技术 。 但最近公布的有关数据显示, 伦敦警方使用的面部识别系统错误率高达98%, 被批评为“几乎完全不准确” 。 伦敦警察局局长克雷茜达·迪克对此辩护说, 她不认为这项技术会带来大量逮捕行动, 但公众“期待”执法机构测试使用面部识别技术 。
英国警方曾将面部识别技术应用在音乐会、节日庆典或足球赛等场合 。 据英国媒体报道, 在威尔士加的夫举行的2017年欧洲冠军联赛决赛中, 警方使用的面部识别系统产生2400多次匹配, 其中2200多次是“假阳性”匹配, 即把普通人错认为犯罪嫌疑人 。
美国麻省理工学院“媒体实验室”研究人员测试了微软、IBM(国际商用机器)和中国旷视科技3家公司的面部识别系统, 让3个系统判断1270张图片中人物的性别 。 结果显示, 3个系统对肤色较浅男性的判断错误率都低于1%, 识别效果较好;但对肤色较深女性的判断错误率从21%到35%不等, 识别效果差 。
训练数据不理想
对于“媒体实验室”的研究, IBM公司沃森和云平台业务首席架构师鲁奇尔·普里说, 人工智能系统深度学习的有效性有赖于训练的基础数据 。 即使人工智能模型本身设计优异, 不理想的训练数据只能导致高错误率及带有偏见的判断 。 曾有研究显示, 在美国广泛使用的一套面部识别系统训练数据中, 超过75%的图像为男性, 超过80%的人为白人 。
英国《自然》杂志在近期一篇评论文章中也指出, 无论在学术界还是产业界, 开发出复杂算法会广受赞誉, 但相对而言, 很少有人关注数据如何收集、处理和归类 。 导致人工智能产生偏见的一个主要因素, 就是训练所使用的数据质量不佳 。
麻省理工学院人工智能研究人员乔纳森·弗兰克尔认为, 很多用于面部识别的图片质量不佳, 尤其是那些街头监控摄像头拍下的图片, 也是导致面部识别技术在实际应用上经常出错的一个重要原因 。
忧心隐私安全
除本身存在技术问题, 面部识别大量使用还引发了对个人隐私的担忧 。 美国乔治敦大学法律中心一份关于技术与隐私的报告显示, 美国目前有16个州允许美国联邦调查局使用面部识别技术, 将犯罪嫌疑人照片与相关数据库中的驾照照片进行比对 。
美国数字化权利保护组织电子前沿基金会的詹妮弗·林奇说, 很多人并不同意警方在寻找罪犯时比对自己的照片, 他们并不知道州政府有这种政策 。
【训练数据不理想,“刷脸”究竟有多靠谱?】出于对隐私和安全的担忧, 一些人甚至研制推出了反监测装备 。 德国人亚当·哈维曾在德国混沌通信大会上介绍了自己研制的“假面”产品, 比如在衣服上绘制起迷惑效果的图案, 让面部识别系统难以识别真实的脸 。
推荐阅读
- 便宜镜片伤眼吗
- 实力不允许啥意思
- 三不娶是指哪三种职业
- 不同环境下接收到地震预警信息该怎么做
- 眼镜怎么擦不伤镜片
- 移动宽带网关不在线是怎么回事 移动宽带网关不在线怎么解决
- 爱玉果是不是无花果
- 华为手机怎么锁定软件不被关掉 怎么锁定软件不被关掉
- 免洗羽绒服不用洗吗
- 渔和鱼的不同含义