sin的四次方积分怎么求


sin的四次方积分怎么求


sin的四次方积分求解是∫(sinx)^4dx=∫[(1/2)(1-cos2x]^2dx=(1/4)∫[1-2cos2x+(cos2x)^2]dx=(3/8)x-(1/4)sin2x+(1/32)sin4x+C 。积分是微积分学与数学分析里的一个核心概念 。通常分为定积分和不定积分两种 。
【sin的四次方积分怎么求】直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值) 。积分的一个严格的数学定义由波恩哈德·黎曼给出 。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限 。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分 。

    推荐阅读