角的概念的推广.弧度制.
任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.
正弦定理.余弦定理.斜三角形解法.
考试要求:
(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.
(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.
(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.
(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.
(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα?cosα=1”.
三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{β|β=k*360°+α,k∈Z}
②终边在x轴上的角的集合: {β|β=k*180°,k∈Z}
③终边在y轴上的角的集合:{β|β=k*180°+90°,k∈Z}
④终边在坐标轴上的角的集合: {β|β=k*90°,k∈Z}
⑤终边在y=x轴上的角的集合:{β|β=k*180°+45°,k∈Z}
⑥终边在轴上y=-x轴上的角的集合:{β|β=k*180°-45°,k∈Z}
⑦若角α与角β的终边关于x轴对称,则角α与角β的关系:α=360°k-β
⑧若角α与角β的终边关于y轴对称,则角α与角β的关系:α=360°k+180°-β
⑨若角α与角β的终边在一条直线上,则角α与角β的关系:α=180°k+β
⑩角α与角β的终边互相垂直,则角α与角β的关系:α=360°k+β±90°
2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′
注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.
、弧度与角度互换公式: 1rad=180°/π≈57.30°=57°18ˊ. 1°=π/180ι≈0.01745(rad)
3、弧长公式:ι=|α|·r. 扇形面积公式:s扇形=1/2lr=1/2|α|·r2
4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则sinα=y/r ; cosα=x/r ;tanα=y/x ; cotα=x/y ;secα=r/y ;. .
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)
6、三角函数线
正弦线:MP; 余弦线:OM; 正切线: AT.
7. 三角函数的定义域:
8、同角三角函数的基本关系式:sinα/cosα=tanα cosα/sinα=cotα
tan2α+cot2α=1 secα·sinα=1 secα·cosα=1
sin2α+cos2α=1 sec2α-tan2α=1 csc2α-cot2α=1
9、诱导公式:
“奇变偶不变,符号看象限”
三角函数的公式:(一)基本关系
推荐阅读
- 大天使之盾怎么合成,天使审判压制堕天使
- 如何做好材料采购成本核算工作,工厂物料采购成本控制
- 降落伞是如何制作的?背后的原理和关键是什么?
- 17 40镜头 17 40
- 计算机电源哪个比较好,配的电脑还差个电源
- 净资产收益率计算公式,净资产收益率的怎么计算
- 双轨学制,剩男剩女和学制太长有关系吗
- 长沙新环境控制房价,长沙房价未来会如何
- 如何监管学生假期作业,控制寒假书面作业总量
- LED短信控制卡,短信控制机