反函数怎么求可以使用arccos计算公式:cos(arcsinx)=√(1-x^2)计算 。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y)。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域 。最具有代表性的反函数就是对数函数与指数函数 。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y) 。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的) 。注意:上标\”?1\”指的是函数幂,但不是指数幂 。
反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同 。在证明这个定理之前先介绍函数的严格单调性 。
设y=f(x)的定义域为D,值域为f(D) 。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1y2,则称y=f(x)在D上严格单调递减 。
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y 。
而由于f的严格单增性,对D中任一x\'<x,都有y\'x,都有y\’\’>y 。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1 。
任取f(D)中的两点y1和y2,设y1<y2 。因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D 。
若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾 。
因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2) 。这就证明了反函数f-1也是严格单增的 。
反函数的求解方法是什么一般是将y=f(x)转换成x=f(y)的形式,然后将x、y互换即可 。
如:
y=ln(x)→x=e^y→反函数y=e^x
y=x3→x=3√y→反函数y=3√x
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x)。
反函数y=f-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域 。最具有代表性的反函数就是对数函数与指数函数 。
扩展资料
反函数的性质:
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ) 。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性 。
函数反函数的求法【反函数怎么求值 反函数怎么求】简单地说,反函数就是从函数y=f(x)中解出x,用y表示 :x=φ(y),如果对于y的每一个值,x都有唯一的值和它对应,那么x=φ(y)就是y=f(x)的反函数,习惯上,用x表示自变量,所以 x=φ(y) 通常写成y=φ(y) (即对换x,y的位置).求一个函数的反函数的步骤:(1)从原函数式子中解出 x 用 y 表示;(2)对换 x,y ,(3)标明反函数的定义域如:求y=√(1-x) 的反函数注:√(1-x)表示根号下(1-x) 两边平方,得y2=1-xx=1-y2对换x,y 得 y=1-x2所以 反函数为y=1-x2(x≥0) 注:反函数里的x是原函数里的y ,原函数中,y≥0,所以反函数里的x≥0 在原函数和反函数中,由于交换了x,y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域.
推荐阅读
- 书怎么画简笔画 书怎么画
- 宓怎么读音 宓怎么读
- 结婚请帖怎么写电子版 结婚请帖怎么写
- 洗澡耳朵进水了出不来怎么办,洗澡耳朵进水怎么办
- 床单上的油渍怎么去除,床单有油渍怎么洗,床单上弄上油怎么清洗
- 四种方法 玉露怎么繁殖,玉露怎么繁殖方法?
- 洗牙后牙缝变大怎么办,洗牙后缝隙变大怎么办
- 大热天不出汗什么原因,大热天为什么不流汗,热天不出汗怎么回事
- 节节高富贵竹怎么养才能更旺盛,节节高富贵竹怎么养?
- 怎么样能快速变白 皮肤怎么样才能变好