反三角函数公式,反三角函数的求导公式是4个

本文目录一览

  • 1,反三角函数的求导公式是4个
  • 2,反三角函数公式表
  • 3,反三角函数公式推理
  • 4,反三角函数公式哪里有
  • 5,反三角函数的公式是啥
  • 6,反三角函数的公式是什么
  • 7,反三角函数公式
  • 8,关于三角函数与反三角函数图表及公式
1,反三角函数的求导公式是4个【反三角函数公式,反三角函数的求导公式是4个】
反三角函数公式,反三角函数的求导公式是4个


2,反三角函数公式表反三角函数公式表:1、arcsin(-x)=-arcsinx2、arccos(-x)=π-arccosx3、arctan(-x)=-arctanx4、arccot(-x)=π-arccotx5、arcsinx+arccosx=π/2=arctanx+arccotx6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x8、当x∈〔0,π〕,arccos(cosx)=x9、x∈(—π/2,π/2),arctan(tanx)=x10、x∈(0,π),arccot(cotx)=x11、x>0,arctanx=arctan1/x,12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)反三角函数定义域及值域1、反正弦函数正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数 。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内 。定义域[-1,1],值域[-π/2,π/2] 。2、反余弦函数余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数 。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内 。定义域[-1,1],值域[0,π] 。3、反正切函数正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数 。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内 。定义域R,值域(-π/2,π/2) 。4、反余切函数余切函数y=cotx在(0,π)上的反函数,叫做反余切函数 。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内 。定义域R,值域(0,π) 。
反三角函数公式,反三角函数的求导公式是4个


3,反三角函数公式推理三角函数是数学中属于初等函数中的超越函数的一类函数 。它们的本质是任何角的集合与一个比值的集合的变量之间的映射 。通常的三角函数是在平面直角坐标系中定义的 。其定义域为整个实数域 。另一种定义是在直角三角形中,但并不完全 。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系 。自己看吧
反三角函数公式,反三角函数的求导公式是4个


4,反三角函数公式哪里有一.一若sinx=a (-1≤a≤1 -∏/2≤x≤∏/2)x=arcsina二①sin(arcsina)=a(-1≤a≤1)②arcsin(sina)=a(-∏/2≤a≤∏/2)二.一若cosx=a (-1≤a≤1 0≤x≤∏)x=arccosa二①cos(arccosa)=a(-1≤a≤1)②arccos(cosa)=a(0≤a≤∏)三.一若tanx=a(-∏/2<x<∏/2)x=arctana二①arctan(-a)=-arctanaa∈R②arctan(tana)=a(-∏/2<a<∏/2)③tan(arctana)=aa∈R5,反三角函数的公式是啥三角函数是由角度,算出sin、cos、tan、cot、sec、csc这六种函数值,也就是直角三角形的三个边的各种比例值 。反三角函数,就是反过来算,由上面六种函数的比例值,反过来计算各种角度 。反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=∏-arccosxarctan(-x)=-arctanxarccot(-x)=∏-arccotxarcsinx+arccosx=∏/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x当x∈〔0,∏〕,arccos(cosx)=xx∈(—∏/2,∏/2),arctan(tanx)=xx∈(0,∏),arccot(cotx)=xx〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)arcsin x, (arccos arctan arcctg)6,反三角函数的公式是什么arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)反三角函数和三角函数关系计算公式secant(正割) sec(x) = 1 / cos(x)cosecant(余割) cosec(x) = 1 / sin(x)cotangent(余切) cotan(x) = 1 / tan(x)inverse sine(反正弦) arcsin(x) = atn(x / sqr(-x * x + 1))inverse secant(反正割) arcsec(x) = atn(x / sqr(x * x - 1)) + sgn((x) - 1) * (2 * atn(1))inverse cosecant(反余割) arccosec(x) = atn(x / sqr(x * x - 1)) + (sgn(x) - 1) * (2 * atn(1))inverse cotangent(反余切) arccotan(x) = atn(x) + 2 * atn(1)反三角函数主要是三个:y=arcsin(x),定义域-1,1 值域[-π/2,π/2]y=arccos(x),定义域-1,1]值域[0,π]y=arctan(x),定义域-∞,+∞值域(-π/2,π/2)y=arccot(x),定义域-∞,+∞值域(0,π)7,反三角函数公式反三角函数公式:arcsin(-x)=-arcsinx arccos(-x)=∏-arccosx arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)cos(arccos x)=x arccos(-x)=π-arccos x tan(arctan x)=x arctan(-x)=-arctanx arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx arcsinx+arccosx=π/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] , 值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)y=arccot(x),定义域(-∞,+∞),值域(0,π)sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得其他几个用类似方法可得cos(arccos x)=x,arccos(-x)=π-arccos xtan(arctan x)=x,arctan(-x)=-arctanx反三角函数其他公式cos(arcsinx)=√(1-x^2)arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x当 x∈[-π/2,π/2] 有arcsin(sinx)=xx∈[0,π], arccos(cosx)=xx∈(-π/2,π/2), arctan(tanx)=xx∈(0,π), arccot(cotx)=xx>0,arctanx=π/2-arctan1/x,arccotx类似若 (arctanx+arctany)∈(-π/2,π/2),则 arctanx+arctany=arctan((x+y)/(1-xy))8,关于三角函数与反三角函数图表及公式同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α 诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—22α+βα-βsinα-sinβ=2cos—--·sin—-—22α+βα-βcosα+cosβ=2cos—--·cos—-—22α+βα-βcosα-cosβ=-2sin—--·sin—-—221sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=- -[cos(α+β)-cos(α-β)]2 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)

推荐阅读